当前位置: 首页 >  技术分享 >  小白也能看懂的 AUC 详解

小白也能看懂的 AUC 详解

导读:简介.上篇文章 小白也能看懂的 ROC 曲线详解 介绍了 ROC 曲线。本文介绍 AUC。AUC 的全名为A rea U nder the ROC.C urve,即 ROC 曲线下的面积,最大为 1。.根据 ROC 和 AUC 的关系,我们可以得到如下结论.ROC 曲线接近左上角

简介

上篇文章 小白也能看懂的 ROC 曲线详解 介绍了 ROC 曲线。本文介绍 AUC。AUC 的全名为A rea U nder the ROC C urve,即 ROC 曲线下的面积,最大为 1。

根据 ROC 和 AUC 的关系,我们可以得到如下结论

  • ROC 曲线接近左上角 —> AUC 接近 1:模型预测准确率很高
  • ROC 曲线略高于基准线 —> AUC 略大于 0.5:模型预测准确率一般
  • ROC 低于基准线 —> AUC 小于 0.5:模型未达到最低标准,无法使用

二分类 AUC

由 AUC 名称可知,可以先计算 ROC 曲线,得到 TPR 和 FPR 的坐标后再分段计算面积即可得到 AUC

下面是对应的 Python 代码

def auc_from_roc(fpr, tpr):
    """
    计算ROC面积
    fpr: 从小到大排序的fpr坐标
    tpr: 从小到大排序的tpr坐标
    """
    area = 0
    for i in range(len(fpr) - 1):
        area += trapezoid_area(fpr[i], fpr[i + 1], tpr[i], tpr[i + 1])
    return area

def trapezoid_area(x1, x2, y1, y2):
    """
    计算梯形面积
    x1, x2: 横坐标 (x1 <= x2)
    y1, y2: 纵坐标 (y1 <= y2)
    """
    base = x2 - x1
    height_avg = (y1 + y2) / 2
    return base * height_avg

也可以直接从真实标签和模型预测分数中计算 ROC,算法的时间复杂度为\(O(n\log n)\),参考文献 1 中的算法 2

# import numpy as np
def auc_binary(y_true, y_score, pos_label):
    """
    y_true:真实标签
    y_score:模型预测分数
    pos_label:正样本标签,如“1”
    """
    num_positive_examples = (y_true == pos_label).sum()
    num_negtive_examples = len(y_true) - num_positive_examples

    tp, fp, tp_prev, fp_prev, area = 0, 0, 0, 0, 0
    score = -np.inf

    for i in np.flip(np.argsort(y_score)):
        if y_score[i] != score:
            area += trapezoid_area(fp_prev, fp, tp_prev, tp)
            score = y_score[i]
            fp_prev = fp
            tp_prev = tp

        if y_true[i] == pos_label:
            tp += 1
        else:
            fp += 1

    area += trapezoid_area(fp_prev, fp, tp_prev, tp)
    area /= num_positive_examples * num_negtive_examples

    return area

多分类 AUC

现在考虑多分类的情况,假设类别数为\(C\)。

一种想法是将某一类别设为正样本类别,其余类别设为负样本类别,然后计算二分类下的 AUC。这种方法叫做一对多,即 One-Vs-Rest (OVR)。可以得到\(C\)个二分类的 AUC,然后计算平均数得到多分类的 AUC。

另一种想法是将某一类别设为正样本类别,另外一个类别(非自身)设为负样本类别计算二分类的 AUC。这种方法叫做一对一,即 One-Vs-One (OVO)。可以得到\(C(C-1)\)个二分类的 AUC,然后计算平均数。

当计算平均数时,可以考虑算数平均数(称为 macro),或者加权平均数(称为 weighted)。其中,加权为各类别的样本所占比例。因此,两两组合可以的得到四种计算多分类 AUC 的方法。值得一提的是,知名机器学习库 scikit-learn 的roc_auc_score 函数包含了上述四种方法。

  1. 一对多 + 算数平均数(OVR + macro)
  2. 一对多 + 加权平均数(OVR + weighted)
  3. 一对一 + 算数平均数(OVO + macro)
  4. 一对一 + 加权平均数(OVO + weighted)

一对多 + 算数平均数

多分类 AUC 的计算公式为

\[\text{AUC}\text{total}=\frac{1}{C}\sum{c_i\in C}\text{AUC}(c_i) \]

其中\(\text{AUC}(c_i)\)是将类别\(c_i\)作为正样本类别(剩余作为负样本类别),计算的二分类 AUC。

# sklearn.metrics.roc_auc_score(y_true, y_score, average='macro', multi_class='ovr')
def auc_ovr_macro(y_true, y_score):
    auc = 0
    C = max(y_true) + 1

    for i in range(C):
        auc += auc_binary(y_true, y_score[:, i], pos_label=i)

    return auc / C

一对多 + 加权平均数

多分类 AUC 的计算公式为

\[\text{AUC}\text{total}=\sum{c_i\in C}\text{AUC}(c_i)p(c_i) \]

其中,权重\(p(c_i)=\frac{\sum\mathbb{I}\{y=c_i\}}{n}\),即标签为\(c_i\)的样本所占比例,权重之和为 1。

# sklearn.metrics.roc_auc_score(y_true, y_score, average='weighted', multi_class='ovr')
def auc_ovr_weighted(y_true, y_score):
    auc = 0
    C = max(y_true) + 1
    n = len(y_true)

    for i in range(C):
        p = sum(y_true == i) / n
        auc += auc_binary(y_true, y_score[:, i], pos_label=i) * p

    return auc

一对一 + 算数平均数

多分类 AUC 的计算公式为

\[\text{AUC}\text{total}=\frac{2}{C(C-1)}\sum{\{c_i,c_j\}\in C,
c_i_j}\text{AUC}(c_i,c_j) \]

其中,\(\text{AUC}(c_i,c_j)=\frac{\text{AUC}(c_i|c_j)+\text{AUC}(c_j|c_i )}{2}\)。即将\(c_i\)作为正样本类别、\(c_j\)作为负样本类别计算二分类\(\text{AUC}(c_i|c_j)\);然后将\(c_j\)作为正样本类别、\(c_i\)作为负样本类别计算二分类\(\text{AUC}(c_j|c_i)\)。\(\text{AUC}(c_i,c_j)\)为其计算的算数平均值。由于将\(c_i\)和\(c_j\)组合计算,共得到\(C(C-1)/2\) 个二分类 AUC。

# sklearn.metrics.roc_auc_score(y_true, y_score, average='macro', multi_class='ovo')
def auc_ovo_macro(y_true, y_score):
    auc = 0
    C = max(y_true) + 1

    for i in range(C - 1):
        i_index = np.where(y_true == i)[0]
        for j in range(i + 1, C):
            j_index = np.where(y_true == j)[0]
            index = np.concatenate((i_index, j_index))

            auc_i_j = auc_binary(y_true[index], y_score[index, i], pos_label=i)
            auc_j_i = auc_binary(y_true[index], y_score[index, j], pos_label=j)
            auc += (auc_i_j + auc_j_i) / 2

    return auc * 2 / (C * (C - 1))

一对一 + 加权平均数

多分类 AUC 的计算公式为

\[\text{AUC}\text{total}=\sum{\{c_i,c_j\}\in C,
c_i_j}\text{AUC}(c_i,c_j)p(c_i,c_j) \]

其中,权重\(p(c_i,c_j)=\frac{\sum\mathbb{I}\{y=c_i\}+\sum\mathbb{I}\{y=c_j\}}{(C-1)n}\),即标签为\(c_i\)和\(c_j\)的样本所占比例,分母中的系数\(C-1\)使得权重之和为 1。

# sklearn.metrics.roc_auc_score(y_true, y_score, average='weighted', multi_class='ovo')
def auc_ovo_weighted(y_true, y_score):
    auc = 0
    C = max(y_true) + 1
    n = len(y_true)

    for i in range(C - 1):
        i_index = np.where(y_true == i)[0]
        for j in range(i + 1, C):
            j_index = np.where(y_true == j)[0]
            index = np.concatenate((i_index, j_index))

            p = len(index) / n / (C - 1)
            auc_i_j = auc_binary(y_true[index], y_score[index, i], pos_label=i)
            auc_j_i = auc_binary(y_true[index], y_score[index, j], pos_label=j)
            auc += (auc_i_j + auc_j_i) / 2 * p

    return auc

参考文献

  1. Fawcett, Tom. “An introduction to ROC analysis.” Pattern recognition letters 27, no. 8 (2006): 861-874. https://www.researchgate.net/profile/Tom-Fawcett/publication/222511520_Introduction_to_ROC_analysis/links/5ac7844ca6fdcc8bfc7fa47e/Introduction-to-ROC-analysis.pdf
  2. Hand, David J., and Robert J. Till. “A simple generalisation of the area under the ROC curve for multiple class classification problems.” Machine learning 45 (2001): 171-186. https://link.springer.com/content/pdf/10.1023/A:1010920819831.pdf

作者:PrimiHub-Kevin

内容
  • 【Oculus Interaction SDK】(六)实体按钮 & 按压交互
    【Oculus Interact
    2023-12-10
    前言.前段时间 Oculus 的 SDK.频繁更新,很多已有的教程都不再适用于现在的版本了。本系列文章的主要目的是记录现
  • 【Oculus Interaction SDK】(五)设置不同的抓握手势
    【Oculus Interact
    2023-12-10
    前言.前段时间 Oculus 的 SDK.频繁更新,很多已有的教程都不再适用于现在的版本了。本系列文章的主要目的是记录现
  • 【Oculus Interaction SDK】(八)特殊的 UI(曲面效果 & 手指点击)
    【Oculus Interact
    2023-12-10
    前言.前段时间 Oculus 的 SDK.频繁更新,很多已有的教程都不再适用于现在的版本了。本系列文章的主要目的是记录现
  • 【Oculus Interaction SDK】(十)在 VR 中使用手势识别
    【Oculus Interact
    2023-12-10
    前言.前段时间 Oculus 的 SDK.频繁更新,很多已有的教程都不再适用于现在的版本了。本系列文章的主要目的是记录现
  • 【Oculus Interaction SDK】(一)设置 VR 相机与控制器 & 实现简单的抓取功能
    【Oculus Interact
    2023-12-10
    前言.前段时间 Oculus 的 SDK.频繁更新,很多已有的教程都不再适用于现在的版本了。本系列文章的主要目的是记录现
  • 【Oculus Interaction SDK】(七)使用射线进行交互(物体 & UI)
    【Oculus Interact
    2023-12-10
    前言.前段时间 Oculus 的 SDK.频繁更新,很多已有的教程都不再适用于现在的版本了。本系列文章的主要目的是记录现
  • 【Oculus Interaction SDK】(三)限制可操作物体的移动 / 旋转
    【Oculus Interact
    2023-12-09
    前言.前段时间 Oculus 的 SDK.频繁更新,很多已有的教程都不再适用于现在的版本了。本系列文章的主要目的是记录现
  • 【Oculus Interaction SDK】(十二)Meta Quest 如何开启透视(Passthrough)
    【Oculus Interact
    2023-12-07
    前言.前段时间 Oculus 的 SDK.频繁更新,很多已有的教程都不再适用于现在的版本了。本系列文章的主要目的是记录现
  • 【Oculus Interaction SDK】(十一)关于手势识别中手势设置的详细信息
    【Oculus Interact
    2023-12-03
    前言.前段时间 Oculus 的 SDK.频繁更新,很多已有的教程都不再适用于现在的版本了。本系列文章的主要目的是记录现
  • 看了几集狂飙,大佬说我变了?
    看了几集狂飙,大佬说我变了?
    2023-12-03
    大家好,我是晓衡。.前天,晓衡有幸被麒麟子大佬给点名了!更确切点,应该是我的一些行为,把麒麟子给惊讶到了。.什么原因呢?
  • 掌握这些写简历投简历的“黑魔法”,告别简历已读不回!
    掌握这些写简历投简历的“黑魔法”
    2023-12-03
    “哎,我还能找到工作吗?”.这是最近加我微信的好友,问的最多的一句话。.太卷了.最近加我微信的朋友很多,我都很奇怪,最近
  • 可爱儿童内衣套装,优质棉质,柔软透气,呵护宝宝肌肤
    可爱儿童内衣套装,优质棉质,柔软
    2024-01-05
    可爱儿童内衣套装,优质棉质,柔软透气,呵护宝宝肌肤.宝宝的皮肤是非常娇嫩的,所以选择合适的内衣套装对于宝宝的健康和舒适至
  • 时尚潮流运动鞋
    时尚潮流运动鞋
    2024-01-15
    时尚潮流运动鞋.时尚潮流运动鞋一直是年轻人喜爱的时尚单品,它不仅舒适耐穿,更是一种个性的象征。随着时尚潮流不断更新,运动
  • 修身弹力牛仔裤
    修身弹力牛仔裤
    2023-12-26
    修身弹力牛仔裤:展现你的魅力.一、时尚的必备单品.修身弹力牛仔裤一直都是时尚界的必备单品,它不仅可以展现出个人的魅力,还
  • 休闲简约短袖衬衫
    休闲简约短袖衬衫
    2023-12-21
    休闲简约短袖衬衫.现代人生活节奏快,休闲简约的穿着成为时尚潮流。短袖衬衫作为经典的休闲单品,一直备受时尚人士的青睐。它舒
  • 休闲宽松T恤衫,释放自在舒适气息
    休闲宽松T恤衫,释放自在舒适气息
    2023-12-26
    休闲宽松T恤衫,释放自在舒适气息.在这个喧嚣的都市中,人们的生活节奏变得越来越快,压力也越来越大。因此,人们更加注重舒适
  • 潮流风衣大衣,彰显都市时尚风采
    潮流风衣大衣,彰显都市时尚风采
    2023-12-16
    潮流风衣大衣,彰显都市时尚风采.潮流风衣大衣一直是时尚界备受追捧的单品之一。它既能为我们遮风挡雨,又能为我们穿出时尚感,
  • 时尚修身连衣裙,展现优雅女性魅力
    时尚修身连衣裙,展现优雅女性魅力
    2023-12-06
    时尚修身连衣裙,展现优雅女性魅力.时尚修身连衣裙一直是女性衣橱里的必备单品,不仅款式多样,而且能够展现出女性的优雅魅力。
  • 保暖舒适羊毛大衣
    保暖舒适羊毛大衣
    2024-01-05
    保暖舒适羊毛大衣.冬季来临,寒冷的天气让人们更加注重保暖。在这个时候,一件保暖舒适的羊毛大衣成为了许多人的首选。羊毛大衣
  • 萌娃配饰套装,包包、帽子、围巾等,增添宝宝的时尚气息
    萌娃配饰套装,包包、帽子、围巾等
    2024-01-20
    萌娃配饰套装,为宝宝增添时尚气息.宝宝是家庭的小太阳,****们都希望给他们最好的一切。随着时尚的发展,宝宝的时尚潮流也
  • 轻盈雪纺衬衫,打造清新淑女形象
    轻盈雪纺衬衫,打造清新淑女形象
    2023-12-31
    轻盈雪纺衬衫,打造清新淑女形象.雪纺材质的衬衫一直以来都是清新淑女形象的代表,它轻盈飘逸的质地,柔软透气的触感,让人仿佛