当前位置: 首页 >  技术分享 >  神经网络训练中的欠拟合、过拟合问题

神经网络训练中的欠拟合、过拟合问题

导读:神经网络训练中的问题.神经网络在数据之海中打捞规律,自成模型。这个过程全权由电脑完成,也因此我们担心它是否是一种泛化的模式,在其它「海域」继续工作时,它能否也能得到正确的结果?如何发现.可以泛化的模式 是机器学习的根本问题。.通常,模型越复杂、训练样本越少,它的泛化能力就会受到考

神经网络训练中的问题

神经网络在数据之海中打捞规律,自成模型。这个过程全权由电脑完成,也因此我们担心它是否是一种泛化的模式,在其它「海域」继续工作时,它能否也能得到正确的结果?如何发现 可以泛化的模式 是机器学习的根本问题。

通常,模型越复杂、训练样本越少,它的泛化能力就会受到考验:

  1. 可调整参数的数量很多时,模型更容易出现「过拟合」
  2. 权重参数的取值范围较大时,模型更容易出现「过拟合」
  3. 训练样本不足时,容易出现「过拟合」(即便模型很简单)

过拟合与欠拟合

我们的数据通常分成3份:

  • 训练数据:用于神经网络训练的数据;
  • 测试数据:神经网络训练完后,用于评估其准确度的数据;
  • 验证数据:为了确定候选模型中的最佳模型所用的检验数据。

在实际训练中,会有 欠拟合过拟合 的情况。我们将神经网络用训练数据计算时的误差称为「训练误差」,用测试数据计算时的误差称为「泛化误差」。那么:

  • 当训练误差与泛化误差都很大时,称模型「欠拟合」。由于训练误差大,所以也称该模型有「高偏差」问题;
  • 当训练误差很小,但泛化误差很大时,称模型「过拟合」。由于泛化误差大,所以也称该模型有「高方差」问题。

模型选取

在机器学习中,我们通常从几个候选模型后选择最终的模型。例如,训练多层感知机时,我们会⽐较有着不同隐藏层数、每层有着不同数量神经元以及使用不同激活函数的模型。

当神经网络「欠拟合」时,我们首先可以让它训练更长一段时间,如果仍无效,则会考虑使用更复杂的神经网络(更多隐藏层、增加层的神经元、换其它激活函数等)或者使用其它类型的神经网络。

数据集大小

在如今有大量数据(百万甚至更大)的情况下,训练数据的比重可以占得很大:训/测/验 = 98%/1%/1% 即便是1%的数据也有上万,足以用于检验了,我们可以将更多数据投入训练中。

训练数据集的大小对模型训练结果有什么影响?训练集样本过少,可能会导致严重的「过拟合」问题,反过来说,更多的训练数据能减小泛化误差,而且通常没有坏处(除了训练久一点),尤其是训练复杂的模型时。

在尝试了更多数据后,如果模型仍「过拟合」或者你原本的数据已经是高质量的了,无法再获得更多数据时,则可以考虑 正则化 ,或者换用其它类型的神经网络。

正则化

有一些常用的正则化模型的技术,可以帮助我们缓解过拟合问题。

1. 权重衰减

权重衰减,也称为 \(L_2\) 正则化,它在原本损失函数的基础上,加上了「某系数 * 权重矩阵的各元素平方和」,这个「某系数」一般取较小值(<0.1):

关于该公式的更多内容可以移步这个视频!

从新的损失函数可以看出,如果想要将其值变小,就需要额外将权重的值变小才行。这也就与开头说的影响模型泛化的因素之二(权重取值范围)相吻合,所以它在提高模型泛化能力上能起作用。

  • 为什么用 \(L_2\) 而不是 \(L_1\) 正则化?
    \(L_2\) 会对权重向量的大分量施加巨大的惩罚,使得学习算法偏向于在大量特征上均匀分布权重的模型。假设有一个神经网络的权重为 \(W = [0.5, 1.2, 1.3, -2.1]\),在进行权重衰减时,首当其冲的必定是-2.1这个值,这有助于防止模型过分依赖该权重计算,使学习算法更倾向于在许多特征上均匀分布权重的模型。

  • 需要对偏置b进行同样处理吗?
    不需要,因为偏置之于模型,相当于常数至于函数,在函数中调整常数项的大小只会影响函数的位置,并不影响函数的形状;这对于神经网络同理,「泛化能力」与神经网络所构成的函数形状密切相关,所以偏置没必要进行同样的衰减。

2. 暂退法(Dropout)

暂退法会在训练时(具体点说是前向传播时),将模型隐藏层中的每层的神经元以一定概率舍弃:

你肯定也能看出它的道理:降低模型复杂度、减小权重参数范围,这分别对应先前所讲的因素一和因素二。

  • 降低模型复杂度可以理解,但为什么这么做也能减小权重参数范围?
    因为每个权重都有可能被暂时丢弃的可能,也就是说会不参与某几次权重更新,这样也就减小了它的参数范围(相比不做Dropout正则化时)。

参考(墙裂推荐捏):

  1. 《动手学深度学习(第二版)》 4.4部分
  2. 《“L1和L2正则化”直观理解(之二),为什么又叫权重衰减?到底哪里衰减了?》b站up主 王木头学科学
  3. 《如何解决过拟合问题?L1、L2正则化及Dropout正则化讲解》b站up主 摸鱼蟹
内容
  • 可爱儿童内衣套装,优质棉质,柔软透气,呵护宝宝肌肤
    可爱儿童内衣套装,优质棉质,柔软
    2024-01-05
    可爱儿童内衣套装,优质棉质,柔软透气,呵护宝宝肌肤.宝宝的皮肤是非常娇嫩的,所以选择合适的内衣套装对于宝宝的健康和舒适至
  • 时尚潮流运动鞋
    时尚潮流运动鞋
    2024-01-15
    时尚潮流运动鞋.时尚潮流运动鞋一直是年轻人喜爱的时尚单品,它不仅舒适耐穿,更是一种个性的象征。随着时尚潮流不断更新,运动
  • 修身弹力牛仔裤
    修身弹力牛仔裤
    2023-12-26
    修身弹力牛仔裤:展现你的魅力.一、时尚的必备单品.修身弹力牛仔裤一直都是时尚界的必备单品,它不仅可以展现出个人的魅力,还
  • 休闲简约短袖衬衫
    休闲简约短袖衬衫
    2023-12-21
    休闲简约短袖衬衫.现代人生活节奏快,休闲简约的穿着成为时尚潮流。短袖衬衫作为经典的休闲单品,一直备受时尚人士的青睐。它舒
  • 休闲宽松T恤衫,释放自在舒适气息
    休闲宽松T恤衫,释放自在舒适气息
    2023-12-26
    休闲宽松T恤衫,释放自在舒适气息.在这个喧嚣的都市中,人们的生活节奏变得越来越快,压力也越来越大。因此,人们更加注重舒适
  • 潮流风衣大衣,彰显都市时尚风采
    潮流风衣大衣,彰显都市时尚风采
    2023-12-16
    潮流风衣大衣,彰显都市时尚风采.潮流风衣大衣一直是时尚界备受追捧的单品之一。它既能为我们遮风挡雨,又能为我们穿出时尚感,
  • 时尚修身连衣裙,展现优雅女性魅力
    时尚修身连衣裙,展现优雅女性魅力
    2023-12-06
    时尚修身连衣裙,展现优雅女性魅力.时尚修身连衣裙一直是女性衣橱里的必备单品,不仅款式多样,而且能够展现出女性的优雅魅力。
  • 保暖舒适羊毛大衣
    保暖舒适羊毛大衣
    2024-01-05
    保暖舒适羊毛大衣.冬季来临,寒冷的天气让人们更加注重保暖。在这个时候,一件保暖舒适的羊毛大衣成为了许多人的首选。羊毛大衣
  • 萌娃配饰套装,包包、帽子、围巾等,增添宝宝的时尚气息
    萌娃配饰套装,包包、帽子、围巾等
    2024-01-20
    萌娃配饰套装,为宝宝增添时尚气息.宝宝是家庭的小太阳,****们都希望给他们最好的一切。随着时尚的发展,宝宝的时尚潮流也
  • 轻盈雪纺衬衫,打造清新淑女形象
    轻盈雪纺衬衫,打造清新淑女形象
    2023-12-31
    轻盈雪纺衬衫,打造清新淑女形象.雪纺材质的衬衫一直以来都是清新淑女形象的代表,它轻盈飘逸的质地,柔软透气的触感,让人仿佛