当前位置: 首页 >  技术分享 >  python机器学习经典算法代码示例及思维导图(数学建模必备)

python机器学习经典算法代码示例及思维导图(数学建模必备)

导读:最近几天学习了机器学习经典算法,通过此次学习入门了机器学习,并将经典算法的代码实现并记录下来,方便后续查找与使用。.这次记录主要分为两部分:第一部分是机器学习思维导图,以框架的形式描述机器学习开发流程,并附有相关的具体python库,做索引使用;第二部分是相关算法的代码实现(其实

最近几天学习了机器学习经典算法,通过此次学习入门了机器学习,并将经典算法的代码实现并记录下来,方便后续查找与使用。
这次记录主要分为两部分:第一部分是机器学习思维导图,以框架的形式描述机器学习开发流程,并附有相关的具体python库,做索引使用;第二部分是相关算法的代码实现(其实就是调包),方便后面使用时直接复制粘贴,改改就可以用,尤其是在数学建模中很实用。

第一部分,思维导图:

第二部分,代码示例:

机器学习代码示例

导包

import numpy as np
import pandas as pd
from matplotlib.pyplot import plot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import VarianceThreshold
from scipy.stats import pearsonr

from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression
from sklearn.metrics import mean_squared_error
from sklearn.metrics import classification_report
from sklearn.metrics import roc_auc_score
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import joblib

特征工程

特征抽取

def dict_demo():
    data = [{'city': '北京', 'temperature': 100}, {'city': '上海', 'temperature': 200},
            {'city': '广州', 'temperature': 300}]
    transfer = DictVectorizer()
    data_new = transfer.fit_transform(data)
    data_new = data_new.toarray()
    print(data_new)
    print(transfer.get_feature_names_out())


# dict_demo()

def count_demo():
    data = ["I love love China", "I don't love China"]
    transfer = CountVectorizer()
    data_new = transfer.fit_transform(data)
    data_new = data_new.toarray()
    print(data_new)
    print(transfer.get_feature_names_out())


# count_demo()

def chinese_demo(d):
    tt = " ".join(list(jieba.cut(d)))
    return tt


# data = [
#     "晚风轻轻飘荡,心事都不去想,那失望也不失望,惆怅也不惆怅,都在风中飞扬",
#     "晚风轻轻飘荡,随我迎波逐浪,那欢畅都更欢畅,幻想更幻想,就像 你还在身旁"]
# res = []
# for t in data:
#     res.append(chinese_demo(t))
#
# transfer = TfidfVectorizer()
# new_data = transfer.fit_transform(res)
# new_data = new_data.toarray()
# print(new_data)
# print(transfer.get_feature_names_out())

数据预处理

def minmax_demo():
    data = pd.read_csv("datasets/dating.txt")
    data = data.iloc[:, 0:3]
    print(data)
    transfer = MinMaxScaler()
    data_new = transfer.fit_transform(data)
    print(data_new)
    return None


# minmax_demo()


def standard_demo():
    data = pd.read_csv("datasets/dating.txt")
    data = data.iloc[:, 0:3]
    print(data)
    transfer = StandardScaler()
    data_new = transfer.fit_transform(data)
    print(data_new)
    return None


# standard_demo()

def stats_demo():
    data = pd.read_csv("./datasets/factor_returns.csv")
    data = data.iloc[:, 1:10]
    transfer = VarianceThreshold(threshold=10)
    data_new = transfer.fit_transform(data)
    print(data_new)
    print(data_new.shape)
    df = pd.DataFrame(data_new, columns=transfer.get_feature_names_out())
    print(df)


# stats_demo()

def pear_demo():
    data = pd.read_csv("./datasets/factor_returns.csv")
    data = data.iloc[:, 1:10]
    print(data.corr(method="pearson"))


# pear_demo()

模型训练

分类算法

KNN

# 读取数据
iris = load_iris()
# 数据集划分
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
# 数据标准化
transfer = StandardScaler()
transfer.fit(x_train)
x_train = transfer.transform(x_train)
x_test = transfer.transform(x_test)
# 模型训练
estimator = KNeighborsClassifier(n_neighbors=i)
estimator.fit(x_train, y_train)
# 模型预测
y_predict = estimator.predict(x_test)
score = estimator.score(x_test, y_test)
print("score:", score)

朴素贝叶斯

new = fetch_20newsgroups(subset="all")
x_train, x_test, y_train, y_test = train_test_split(new.data, new.target, random_state=42)
# 文本特征提取
transfer = TfidfVectorizer()
transfer.fit(x_train)
x_train = transfer.transform(x_train)
x_test = transfer.transform(x_test)
estimator = MultinomialNB()
estimator.fit(x_train, y_train)
score = estimator.score(x_test, y_test)
print(score)

决策树

iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
estimator = DecisionTreeClassifier(criterion='gini')
estimator.fit(x_train, y_train)
score = estimator.score(x_test, y_test)
print(score)
# 决策树可视化
export_graphviz(estimator, out_file='tree.dot', feature_names=iris.feature_names)

随机森林

x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7)
estimator = RandomForestClassifier(random_state=42, max_features='sqrt')
param_dict = {'n_estimators': range(10, 50), 'max_depth': range(5, 10)}
estimator = GridSearchCV(estimator=estimator, param_grid=param_dict, cv=3)
estimator.fit(x_train, y_train)
print(estimator.best_score_)
print(estimator.best_estimator_)
print(estimator.best_params_)

回归算法

线性回归

def demo1():
    data_url = "http://lib.stat.cmu.edu/datasets/boston"
    raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
    data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
    target = raw_df.values[1::2, 2]
    x_train, x_test, y_train, y_test = train_test_split(data, target, train_size=0.7, random_state=42)
    transfer = StandardScaler()
    transfer.fit(x_train)
    x_train = transfer.transform(x_train)
    x_test = transfer.transform(x_test)
    estimator = LinearRegression()
    estimator.fit(x_train, y_train)
    y_predict = estimator.predict(x_test)
    mse = mean_squared_error(y_test, y_predict)
    print("正规方程-", estimator.coef_)
    print("正规方程-", estimator.intercept_)
    print(mse)


def demo2():
    data_url = "http://lib.stat.cmu.edu/datasets/boston"
    raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
    data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
    target = raw_df.values[1::2, 2]
    x_train, x_test, y_train, y_test = train_test_split(data, target, train_size=0.7, random_state=42)
    transfer = StandardScaler()
    transfer.fit(x_train)
    x_train = transfer.transform(x_train)
    x_test = transfer.transform(x_test)
    estimator = SGDRegressor()
    estimator.fit(x_train, y_train)
    y_predict = estimator.predict(x_test)
    mse = mean_squared_error(y_test, y_predict)
    print("梯度下降", estimator.coef_)
    print("梯度下降", estimator.intercept_)
    print(mse)
岭回归
def demo3():
    data_url = "http://lib.stat.cmu.edu/datasets/boston"
    raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
    data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
    target = raw_df.values[1::2, 2]
    x_train, x_test, y_train, y_test = train_test_split(data, target, train_size=0.7, random_state=42)
    transfer = StandardScaler()
    transfer.fit(x_train)
    x_train = transfer.transform(x_train)
    x_test = transfer.transform(x_test)
    estimator = Ridge()
    estimator.fit(x_train, y_train)
    y_predict = estimator.predict(x_test)
    mse = mean_squared_error(y_test, y_predict)
    print("梯度下降", estimator.coef_)
    print("梯度下降", estimator.intercept_)
    print(mse)
逻辑回归
def demo4():
    data = pd.read_csv("./datasets/breast-cancer-wisconsin.data",
                       names=['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size',
                              'Uniformity of Cell Shape',
                              'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
                              ' Normal Nucleoli', 'Mitoses', 'Class'])
    data.replace(to_replace="?", value=np.nan, inplace=True)
    data.dropna(inplace=True)
    x = data.iloc[:, 1:-1]
    y = data['Class']
    x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7, random_state=42)
    transfer = StandardScaler()
    transfer.fit(x_train)
    x_train = transfer.transform(x_train)
    x_test = transfer.transform(x_test)
    estimator = LogisticRegression()
    estimator.fit(x_train, y_train)
    # joblib.dump(estimator, 'estimator.pkl')
    # estimator = joblib.load('estimator.pkl')
    y_predict = estimator.predict(x_test)
    print(estimator.coef_)
    print(estimator.intercept_)
    score = estimator.score(x_test, y_test)
    print(score)
    report = classification_report(y_test, y_predict, labels=[2, 4], target_names=["良性", "恶性"])
    print(report)
    auc = roc_auc_score(y_test, y_predict)
    print(auc)

聚类算法

KMeans

data = pd.read_csv("./datasets/factor_returns.csv")
data = data.iloc[:, 1:10]
transfer = VarianceThreshold(threshold=10)
data_new = transfer.fit_transform(data)
# df = pd.DataFrame(data_new, columns=transfer.get_feature_names_out())
estimator = KMeans()
estimator.fit(data_new)
y_predict = estimator.predict(data_new)
print(y_predict)
s = silhouette_score(data_new, y_predict)
print(s)

模型调优

# 网格搜索与交叉验证:以KNN为例
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
transfer = StandardScaler()
transfer.fit(x_train)
x_train = transfer.transform(x_train)
x_test = transfer.transform(x_test)
estimator = KNeighborsClassifier()
# 网格搜素设置
para_dict = {"n_neighbors": range(1, 10)}
estimator = GridSearchCV(estimator, para_dict, cv=10)
estimator.fit(x_train, y_train)
# 最佳参数
print("best_score_:", estimator.best_score_)
print("best_estimator_:", estimator.best_estimator_)
print("best_params_:", estimator.best_params_)

本文作者:CodingOrange
本文链接:https://www.cnblogs.com/CodingOrange/p/17642747.html
转载请注明出处!

内容
  • 【Haxe】(二)字符串与变量的输入输出
    【Haxe】(二)字符串与变量的
    2023-12-06
    前言.每次学习一门新语言,各种手册和教程一上来就是讲变量如何定义,数据结构怎么用,很少有讲输入输出应该怎么写的。我比较喜
  • python实现基于RPC协议的接口自动化测试
    python实现基于RPC协议的
    2023-12-05
    01什么是RPC.RPC(Remote Procedure Call)远程过程调用协议.是一个用于建立适当框架的协议。从
  • Leetcode刷题笔记——二分法
    Leetcode刷题笔记——二分
    2023-12-04
    二分法是搜索算法中极其典型的方法,其要求输入序列有序并可随机访问。算法思想为.输入:有序数组nums,目的数值targe
  • 智能车载设备
    智能车载设备
    2023-10-02
    智能车载设备.我们的智能车载设备是一款结合了最新科技和创新设计的汽车配件,旨在提升驾驶体验、提高安全性和为用户带来智能化
  • 智能医疗设备
    智能医疗设备
    2023-10-02
    智能医疗设备产品介绍.智能医疗设备是一款集成了先进技术的高科技产品,旨在提高医疗保健的效率和质量。该设备主要应用于医院、
  • 互联网金融服务平台
    互联网金融服务平台
    2023-10-01
    互联网金融服务平台.产品功能.个人理财:用户可以通过平台进行投资理财,选择适合自己的理财产品,实现资金增值。.贷款服务:
  • 电子元件电感
    电子元件电感
    2023-10-02
    电子元件电感.产品功能.电感是一种重要的电子元件,用于储存和释放电能,调节电路中的电流和电压。它在电子设备和通讯设备中起
  • 智能智能家居设备
    智能智能家居设备
    2023-10-05
    智能家居设备介绍.产品概述.我们当前运营的产品是智能家居设备,它是一款智能化的家居控制系*,旨在为用户提供更便捷、舒适的
  • 智能可穿戴设备
    智能可穿戴设备
    2023-10-03
    产品功能介绍.我们的智能可穿戴设备是一款集健康监测、运动追踪、通讯互动等多种功能于一体的产品。它采用先进的传感技术,可实
  • 智能手机
    智能手机
    2023-10-01
    产品功能介绍:智能手机.智能手机是一款集通讯、娱乐、办公等功能于一体的移动智能设备。首先,智能手机具有强大的通讯功能,支
  • 智能智能物流设备
    智能智能物流设备
    2023-10-04
    智能物流设备.1. 产品描述.智能物流设备是一款基于物联网技术的智能设备,主要用于运输、储存和**物流货物。其核心功能是
  • 智能智能娱乐设备
    智能智能娱乐设备
    2023-10-04
    产品功能介绍.1. 智能娱乐设备.我们的智能娱乐设备是一款结合了智能技术和娱乐功能的产品。它拥有丰富的娱乐资源,包括音乐
  • 智能电视
    智能电视
    2023-10-01
    产品功能介绍.智能电视是一款结合了传统电视和智能硬件的产品。它内置了智能操作系*,能够连接互联网并运行各种应用程序。智能