当前位置: 首页 >  技术分享 >  【scikit-learn基础】--『回归模型评估』之可视化评估

【scikit-learn基础】--『回归模型评估』之可视化评估

导读:在scikit-learn中,回归模型的可视化评估 是一个重要环节。.它帮助我们理解模型的性能,分析模型的预测能力,以及检查模型是否存在潜在的问题。.通过可视化评估 ,我们可以更直观地了解回归模型的效果,而不仅仅依赖于传统的评估指标。.1. 残差图.所谓残差 ,就是实际观测值与预

scikit-learn中,回归模型的可视化评估 是一个重要环节。
它帮助我们理解模型的性能,分析模型的预测能力,以及检查模型是否存在潜在的问题。
通过可视化评估 ,我们可以更直观地了解回归模型的效果,而不仅仅依赖于传统的评估指标。

1. 残差图

所谓残差 ,就是实际观测值与预测值之间的差值。

残差图 是指以残差 为纵坐标,以任何其他指定的量为横坐标的散点图。
如果残差图 中描绘的点围绕残差等于0的直线上下随机散布,说明回归直线对原观测值的拟合情况良好。反之,则说明回归直线对原观测值的拟合不理想。

下面做一个简单的线性回归模型,然后绘制残差图。

from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import PredictionErrorDisplay

fig, ax = plt.subplots(1, 2)
fig.set_size_inches(10, 4)

X, y = make_regression(n_samples=100, n_features=1, noise=10)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("样本数据")

# 初始化最小二乘法线性模型
reg = LinearRegression()
# 训练模型
reg.fit(X, y)
y_pred = reg.predict(X)

ax[0].plot(X, y_pred, color="red")
display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
ax[1].set_title("残差图")
display.plot(ax=ax[1])

plt.show()


左边是随机生成的样本数据 ,其中的红线 是训练之后拟合的线性模型。
右边是根据scikit-learn中提供的PredictionErrorDisplay模块生成的残差图

2. 对比图

对比图 将实际目标值与模型预测值进行对比,直观地展示模型的预测能力。
通常,我们希望看到实际值预测值 沿着一条\(y=x\)的直线分布,这意味着模型预测非常准确。

下面用一些混乱度高的样本,来看看对比图的效果。

from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import PredictionErrorDisplay

fig, ax = plt.subplots(1, 2)
fig.set_size_inches(12, 6)

# 混乱度高,noise=100
X, y = make_regression(n_samples=100, n_features=1, noise=100)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("样本数据")

# 初始化最小二乘法线性模型
reg = LinearRegression()
# 训练模型
reg.fit(X, y)
y_pred = reg.predict(X)

ax[0].plot(X, y_pred, color="red")
display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
ax[1].set_title("对比图")
display.plot(ax=ax[1], kind="actual_vs_predicted")

plt.show()


原始样本比较混乱,线性模型 很难拟合,所以看对比图 就可以发现,真实值预测值 差别很大。
越靠近对比图 中间那个虚线的点,真实值预测值 越接近。

换一个混乱程度低的样本,再看看对比图 的效果。

# 混乱度 noise=10,比如上面那个示例降10倍
# 上面代码只改这一行,其它部分代码不用改
X, y = make_regression(n_samples=100, n_features=1, noise=10)


从图中也可以看出,这次的模型拟合效果要好很多。

3. 总结

可视化的图形向我们传达了模型预测的准确性 、线性假设的满足程度 、误差项的独立性 以及特征对预测的影响程度 等信息,让我们对模型有更深入的了解。

通过图形化的方式,帮助我们更直观地理解回归模型的性能,发现模型潜在的问题,指导我们改进模型。
不过,可视化评估 虽然直观,但并不能完全替代传统的量化评估指标。
两者应该相互补充,共同构成对回归模型性能的全面评价。

内容
  • 《领域驱动设计》:从领域视角深入仓储(Repository)的设计和实现
    《领域驱动设计》:从领域视角深入
    2023-12-04
    一、前言 “.DDD设计的目标是关注领域模型而并非技术来创建更好的软件,假设开发人员构建了一个SQL,并将它传递给基础设
  • JVM调优篇:探索Java性能优化的必备种子面试题
    JVM调优篇:探索Java性能优
    2023-12-04
    JVM内存模型.首先面试官会询问你在进行JVM调优之前,是否了解JVM内存模型的基础知识。这是一个重要的入门问题。JVM
  • 游戏中模型动画的几种实现方式
    游戏中模型动画的几种实现方式
    2023-12-02
    游戏内动画的实现方式一般有这几种:.骨骼动画.顶点动画.材质动画.CPU蒙皮动画.骨骼动画.骨骼动画是一种基于骨骼系统的
  • ***性能优化和调整服务
    ***性能优化和调整服务
    2023-12-31
    ***性能优化和调整服务.***性能优化和调整服务是指针对服务器的硬件和软件进行调整和优化,以提高其运行效率和稳定性的服
  • 科技创新孵化器服务
    科技创新孵化器服务
    2023-12-16
    科技创新孵化器服务.科技创新孵化器是指为初创科技企业提供办公、技术、**和资金服务的机构,而科技创新孵化器服务则是指这些
  • ***迁移与升级解决方案
    ***迁移与升级解决方案
    2024-01-05
    ***迁移与升级解决方案.随着业务的不断扩大和发展,很多企业逐渐意识到原有的***已经不能满足日益增长的需求,因此需要进
  • 虚拟现实技术开发
    虚拟现实技术开发
    2024-01-15
    虚拟现实技术开发.虚拟现实技术已经成为了当今科技行业的热门话题,它的发展日益迅猛,给人们的生活和工作带来了巨大的变革。在
  • 全球电子元件市场趋势分析
    全球电子元件市场趋势分析
    2023-12-31
    全球电子元件市场趋势分析.近年来,全球电子元件市场呈现出不断增长的趋势。随着科技的不断发展和智能设备的普及,电子元件市场
  • 电子元件质量检测与认证服务
    电子元件质量检测与认证服务
    2024-01-05
    电子元件质量检测与认证服务.为什么需要电子元件质量检测与认证服务?.随着电子产业的不断发展,电子元件在各个生产领域都起着
  • ***虚拟化技术咨询服务
    ***虚拟化技术咨询服务
    2023-12-21
    ***虚拟化技术咨询服务.在当今数字化时代,***虚拟化技术越来越受到企业和个人用户的青睐。虚拟化技术通过将物理***划
  • 高性能电子元件**
    高性能电子元件**
    2024-01-10
    高性能电子元件**.随着科技的不断进步,电子行业的发展日新月异。高性能电子元件作为电子产品的关键组成部分,对于产品的性能
  • 定制化电子元件解决方案
    定制化电子元件解决方案
    2024-01-15
    定制化电子元件解决方案.在现代科技发展迅速的时代,电子元件的需求日益增加,同时对于定制化的需求也在不断提升。定制化电子元
  • ***安全加固与防护方案
    ***安全加固与防护方案
    2024-01-10
    ***安全加固与防护方案.随着互联网的快速发展,***安全问题日益凸显。一旦***遭受攻击,可能导致数据泄露、服务中断甚