导读:Q-REG.2023-09-27 airxiv preprint.Jin, S., Barath, D., Pollefeys, M., & Armeni, I. (2023). Q-REG: End-to-End.Trainable Point Cloud Registrati
2023-09-27 airxiv preprint
Jin, S., Barath, D., Pollefeys, M., & Armeni, I. (2023). Q-REG: End-to-End Trainable Point Cloud Registration with Surface Curvature.
简单来说就是RANSAC style不可微,不能end-to-end;而其他learning-based方法为了实现端到端就将hard correspondence换成了基于socre的soft correspondence(hard就是True or False,soft就是有权重,或者说点对匹配程度),又会使得计算开销太大,并且引入大量噪声。
作者就想实现hard correspondence的端到端,怎么办,采用single correspondence来预测变换就可以了,这样就没有random subsets,而是迭代遍历correspondence set,取最好预测结果。
employing higher-order geometric information , Q-REG achieving exhaustive search to replace RANSAC and improve the performance and run-time
使用任意Correspondence Matcher(e.g patch-based: PPFNet, PPF-FoldNet; full-conv: FCGF)得到feature-matching based putative correspondences \(\{P, Q\}\in C\) , 用于之后的Q-REG方法预估变换矩阵。
Q-REG是single-correspondence方法,因此区别于RANSAC每次随机挑选三对corresponding point \(\{p, q\}\) 预测变换矩阵,Q-REG每次只取单对corresponding point,用于estimate transform between \(P\) and \(Q\) 。
Q-REG直接当作工具用的步骤为:
如果嵌入端到端训练则只进行到第二步时根据预测结果构建Loss: \(L_{pose}\) 。
后文对single correspondence为输入预测变换矩阵的过程进行详述,以及介绍 \(L_{pose}\) 的构成
对于single correspondence \(\{p, q\}\in C\) ,可以为点划分local patch(Q-REG通过K=50的KNN来划分),预测一对local patch,并计算两个loca patch彼此的LRF(local reference frame) \(R_p, R_q \in SO(3)\) (即作为将点从世界坐标系转换到局部参考系的旋转矩阵)。假如预测正确,我们就可以做两片点云的对齐( \(R=R_qR_p^T\) )。因此Q- REG应用二次曲面拟合来预估 \(R_p,\ R_q\) 。
至于translation vector \(t\) ,论文直接以 q, p作为两片点云重叠区域的质心, \(t=q-p\) 。
论文中应用如下约束拟合3D quadric surface:
\[\hat{p}^TQp=0 \]
\[Q = \begin{pmatrix}A&D&E&G\\D&B&F&H\\E&F&C&I\\G&H&I&J\end{pmatrix} \]
理论上最佳的是local patch的所有点都能落在曲面上,但是当然不可能🤗,所以需要拟合。
之后,作者重写了上述公式便于应用:
使用上述linear equation获得 \(Q\) 中的系数。
然后对求得二次曲面系数矩阵 \(Q\) 应用平移,使得keypoint能落在曲面上,也就是调整系数 \(J\) 使得对于keypoint,公式 \(p^TQp =0\) 成立。
最终取二次曲面系数矩阵 \(Q\) 的部分,得到如下矩阵 \(P\) ,并使用对矩阵 \(P\) 使用 Eigen-decomposition ,得到特征向量矩阵 \(V\) 作为求得LRF \(R_p或R_q\) 。
注意:为了保留尺度(scaling) 信息,这里不对特征向量进行单位化。
the rotation \(R=R_pPR_q^T \in SO(3)\) ,其中 \(P\) 表示一个unknown permutation matrix,用于控制p的LRF与q的LRF之间的各轴对应关系,这种对应关系分三种情况考虑:
所以为了实现estimate rigid transformation from a single correspondence,只保留 \(C\) LRF三轴的模(长度)各不相同的corrspondences,各轴长度差都大于 \(10^{-3}\) 。之后就可以用 \(R=R_pPR_q^T\) 公式计算刚性旋转矩阵。
\[\epsilon (T{p,q}) = \sqrt{\frac{1}{|C|}\sum{(p_i,qi) \in C}{||T{p,q}p_i-q_i}||_2^2} \]
\[L{pose} = \sum{(p,q)\in C}{(1-\frac{min(\epsilon(T_{p,q}), \gamma)}{\gamma} -s)} \]
上述所提到的 \(L_{pose}\) 可以与其他广泛使用的registration loss functions 相结合实现从特征匹配到配准的端到端训练。
没说的,在matcher一致的情况下全SOTA,并且还比其他estimator(ICP、PointDesc……)好.消融实验也证明了Q- REG所有component都有效提升了一定的指标额度:quadric-fitting single-corresponding solver、local optimation、used in end-to-end training。
[^ 1]:Karel Lebeda, Jirı Matas, and Ondrej Chum. Fixing the locally optimized ransac-full experimental evaluation. In British machine vision conference. Citeseer, 2012. 5
上一篇:ASR项目实战-前处理
下一篇:【ALM工具软件】上海道宁与Pe